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ABSTRACT
This article proposes a general optimization strategy, which combines results from different optimization
or parameter estimation methods to overcome shortcomings of a single method. Shotgun optimization is
developed as a framework which employs different optimization strategies, criteria, or conditional targets
to enable wider likelihood exploration. The introduced shotgun optimization approach is embedded
into an incremental mixture importance sampling algorithm to produce improved posterior samples for
multimodal densities and creates robustness in cases where the likelihood and prior are in disagreement.
Despite using different optimization approaches, the samples are combined into samples from a single
target posterior. The diversity of the framework is demonstrated on parameter estimation from differential
equation models employing diverse strategies including numerical solutions and approximations thereof.
Additionally the approach is demonstrated on mixtures of discrete and continuous parameters and is shown
to ease estimation from synthetic likelihood models. R code of the implemented examples can be found at
https://github.com/BiljanaJSJ/ IMIS-ShOpt. Supplementary materials for this article are available online.
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1. Introduction

Sampling from a posterior density is challenging when the
posterior modes are separated with deep valleys of low prob-
ability or when the posterior space is rife with many minor
modes, ripples, and ridges. Theoretically, standard Metropolis–
Hastings or Gibbs algorithms converge to the target density
if run infinitely long. Tempering methods, such as simulated
tempering (Marinari and Parisi 1992; Geyer and Thompson
1995; Zhang and Ma 2008) and parallel tempering (Swendsen
and Wang 1986; Geyer 1991; Hukushima and Nemoto 1996), are
random-walk variants designed to efficiently deal with sampling
from multimodal distributions. However, parallel tempering
could exacerbate topological challenges of the posterior if the
prior is inconsistent with the likelihood, trapping the sampler
in a local mode (Campbell and Steele 2012).

Importance sampling algorithms, such as sampling impor-
tance resampling (SIR) (Rubin 1987, 1988; Poole and Raftery
2000; Alkema et al. 2011) or sequential Monte Carlo variants
(SMC) (Del Moral, Doucet, and Jasra 2006) take advantage of
computing the sampling weights in parallel. The difficulty with
importance sampling methods is choosing the initial impor-
tance density to cover the important modes of the target density.
The prior is often chosen to be this initial importance density,
but in practice the challenge of obtaining an initial sample in
the relevant region of the posterior is difficult unless the prior is
close to the posterior.

A frequentist alternative to MCMC methods would be to use
optimization but in the presence of multiple isolated modes,
different starting points for the optimizer result in multiple
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optima. Then the problem shifts to finding a way to combine
these local optima.

Incremental mixture importance sampling with optimiza-
tion (IMIS-Opt) (Raftery and Bao 2010) is designed to dis-
cover important posterior modes by using the prior as a start-
ing point for optimization, and then building a posterior by
incrementally adding optimized local posterior approximations.
Sums of Gaussians can be used to approximate any continuous
probability distribution in L1 and L∞ norms simultaneously
(Bacharoglou 2010) leaving the problem finding the appropriate
Gaussians and the weights for the mixture. The optimization
stage of IMIS-Opt and its use of local geometry improve the
exploration and approximation of the posterior. However, if the
prior disagrees with the likelihood, that is, if the prior covers
the basin of attraction of local but not global likelihood modes,
then IMIS-Opt will miss important modes. As a remedy, one
can choose a diffuse prior, but this implies that the prior should
be chosen for algorithmic convenience rather than representing
expert opinion.

In this article, we modify the IMIS-Opt algorithm by replac-
ing the optimization step with a general optimization strategy,
which is based on the no free lunch (NFL) theorem for opti-
mization (Wolpert and Macready 1997); no single optimiza-
tion method outperforms other methods in every problem but
some problems have special structure which, if known can offer
improvements when exploited by the optimization algorithm.

The proposed multiple-method optimization strategy bal-
ances discovery of global and local modes by combining results
from multiple parameter estimation methods, which may arise
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from exploiting different types of problem structure or from
using different black box algorithms. We refer to this strategy as
shotgun optimization (ShOpt), and the resulting algorithm as
Incremental mixture importance sampling with shotgun opti-
mization (IMIS-ShOpt).

The way the ShOpt combines results from different com-
peting methods is substantially different from multi-objective
optimization (Kuhn and Tucker 1951; Miettinen 2012). While
multi-objective optimization is designed to optimize simultane-
ously several objectives, the ShOpt strategy is a single objective
optimization targeted indirectly through independently opti-
mizing over multiple criteria. For example, in inference from
differential equation models, gradient optimization of likeli-
hoods centered on numerical solutions to the differential equa-
tion typically end up in local, biased modes. However, likeli-
hoods constructed through smoothing based strategies typically
have wider variance parameter estimates with lower bias. While
different optimization strategies provide different results, com-
bined these approaches will explore widely for global modes
while still exploring smaller, local modes in case they are impor-
tant (Berger, Liseo, and Wolpert 1999; Walley and Moral 1999).
All results are combined to build an importance distribution
which is then compared to a single target posterior.

Shotgun optimization is analogous to the ensemble methods
(Madigan and Raftery 1994; Hoeting et al. 1999; Friedman,
Hastie, and Tibshirani 2001; Mendes-Moreira et al. 2012; Mont-
gomery, Hollenbach, and Ward 2012) where relative importance
of the predictions are determined using a combination of mod-
els. Ensemble methods rely on the notion that no particular
model can fully capture the data features. Hence, some mod-
els better predict certain features of the data, while produc-
ing biased predictions in some areas. The ensemble methods
overcome this induced bias by combining models together. In
the ShOpt, certain methods provide better access to different
posterior modes, and combining results from different methods
overcomes the problem of introduced bias.

The rest of the article is organized as follows. Section 2 gives
an overview of IMIS-Opt. In Section 3, ShOpt is introduced
and IMIS-ShOpt is presented. Section 4 shows how to tailor
the IMIS-ShOpt to a variety of models, each exploiting different
model or parameter types. Section 4.1.1 is an easy to visualize
one-dimensional FitzHugh–Nagumo example where the prior
is inconsistent with the likelihood. Section 4.1.2 demonstrates
IMIS-ShOpt overcomes complex posterior topology on the full
FitzHugh–Nagumo differential equation model. Section 4.2 has
an example with mixture of discrete and continuous parameters.
The example in Section 4.3 uses a synthetic likelihood with a
stochastic optimization strategy. Section 5 follows with discus-
sion.

2. Incremental Mixture Importance Sampling With
Optimization

The main objective of IMIS-Opt (Raftery and Bao 2010) is to
iteratively construct an importance sampling distribution. The
initial stage of the IMIS-Opt starts by drawing N0 samples �0 =
{θ1, . . . , θN0} from the prior and then calculating their weights
based on the likelihood function. In the optimization stage, the

D highest-weight points are selected to sequentially initialize the
optimizer, which searches for the nearest mode in the target pos-
terior space. Then B points, drawn from the multivariate Gaus-
sian distribution centered at the modes found by the optimizer,
are added to the current importance distribution. Weighting and
sampling steps of the importance stage are iterated until the
importance weights are reasonably uniform. After the stopping
criterion is met, J inputs are resampled with replacement from
{θ1, . . . , θNK } with weights [w1, . . . , wNK ] where NK is the total
number of particles after the kth stage of the importance sam-
pling distribution. The pseudo-code of the IMIS-Opt is given in
Algorithm 1.

If optimization and importance sampling stages are excluded,
then the algorithm becomes a SIR algorithm (Rubin 1987, 1988;
Poole and Raftery 2000; Alkema, Raftery, and Clark 2007). By
excluding the optimization step, the algorithm becomes IMIS
(Hesterberg 1995; Steele, Raftery, and Emond 2006).

IMIS-Opt initializes the optimizer using the D highest-
weight points which allows it to include additional samples from
potentially important regions of the parameter space. However,
the successful mixing of the IMIS-Opt depends heavily on the
consistency of the information in the prior and likelihood,
and consequently, on whether or not samples from the prior
are contained within basins of attraction for all the important
posterior modes. The implication is that arguably, the prior
should be chosen for optimization convenience rather than
summarizing expert knowledge.

3. Incremental Mixture Importance Sampling With
Shotgun Optimization

The success of IMIS-Opt depends heavily on the consistency
between the prior and the likelihood. If the prior is inconsistent
with the likelihood, all D optimization steps may be initialized in
the basin of attraction of a local mode. The IMIS-ShOpt builds
on IMIS-Opt, by altering the optimization stage to incorporate
the ShOpt strategy, which consists of Q different competitive
parameter estimation methods or optimization strategies. This
implies using a variety of optimization methods or a fixed opti-
mizer on variants of the function to optimize. The ShOpt strat-
egy initializes Q different optimization methods (which could
be run in parallel) for each of the D maximum weight points
from the prior. Replacing the optimization step in Algorithm 1
with the ShOpt in Algorithm 2 gives the pseudo code of IMIS-
ShOpt.

IMIS-ShOpt explores modes and merges the samples from
different regions of the target posterior as explored by the
variety of criteria. The modification of the optimization
strategy depends on the parameter estimation method used.
For example, if a parameter of interest is a location parameter,
the multiple-method optimization in IMIS-ShOpt could be
comprised of Q = 2 strategies: maximum likelihood method
and method of moments. The posterior modifications targeted
by different optimization strategies may give different results
due to their inherent differences in topology of the posterior
space. Weights in the resampling stage of IMIS-ShOpt ensure
that points are appropriately sampled in the final stage. Hence,
keeping the unlikely points in the importance sampling
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Algorithm 1 IMIS-Opt
Goal: Draw samples from the target distribution P(θ | Y).
Input: Data, model, likelihood function, prior distribution, B—
the number of incremental points, D—the number of different
initial points for the optimization, N0—the number of the initial
samples from the prior and J—the number of resampled points.
Initial stage: Draw N0 samples �0 = {θ1, θ2, . . . , θN0} from the
prior distribution P(θ), set k = 0.

For each {θi, i = 1, . . . , N0} calculate the sampling weights:

w∗
i = P (Y | θi)

N0∑
j=1

P(Y | θj)

(1)

Optimization stage:
for d = 1 : D do

Use θ (initial) = argmax
θ

w∗(θ), θ ∈ �d−1 to initial-

ize the optimizer and get local posterior maxima θ
(Opt)
d =

argmax
θ

P(θ | Y) along with the corresponding inverse nega-

tive Hessian �
(Opt)
d .

Construct �d from �d−1 by excluding N0
D nearest neigh-

bor points, that is, exclude N0
D points θ ∈ �d−1 that minimize

the Mahalanobis distance,

(θ − θ
(Opt)
d )

′
(�

(Opt)
d )−1(θ − θ

(Opt)
d ). (2)

Draw B samples θ1:B ∼ MVN(θ
(Opt)
d , �(Opt)

d ); add these
samples to the importance sampling distribution and evaluate
Hk = MVN(θ1:B | θ

(Opt)
d , �(Opt)

d ).
end for
Importance sampling stage:
For each {θi, i = 1, . . . , Nk} calculate weights,

w(k)
i = cP(Y | θi)P(θi)

N0
Nk

P(θi) + B
Nk

k∑
s=1

Hs(θi)

, (3)

where Nk = N0 + B(D + k) and c = 1/
Nk∑
i=1

w(k)
i is the

normalizing constant.

while
Nk∑
1

(1 − (1 − w(k))J) < J(1 − exp (−1)), that is,

importance sampling weights are not approximately uniform
do

Update k = k + 1.

distribution does not harm the algorithm, but it does improve
the posterior exploration.

IMIS-ShOpt has several user defined control parameters,
the initial sample size N0, the number of starting points for
the optimizer D, the number of optimization strategies Q, the
number of points added with every local multivariate normal
approximation B, and the final number of resampled points,
J. Being an importance sampling algorithm, IMIS-ShOpt is
unbiased for any choice of control parameters (Raftery and Bao
2010), however, the choice of control parameters can affect its

Algorithm 1 *
Algorithm 1 IMIS-Opt—continued

Choose the maximum weight input θk and estimate �k
as the weighted covariance of B inputs with smallest Maha-
lanobis distance,

w−1
p (θ) (θ − θk)

′
(�π )−1 (θ − θk) ,

where the weights wp(θ) are proportional to the average of
the importance weights and the uniform weights 1

Nk
, �π is

the covariance of the initial importance distribution.
Draw B samples θ1:B ∼ MVN(θk, �k); add these points

to the importance sampling distribution and evaluate Hk =
MVN(θ1:B | θk, �k).

Update weights w(k) using Equation (3).
end while
Resampling stage:
Resample J points with replacement from {θ1, . . . , θNk} and
weights (w1, . . . , wNk)

′ .

efficiency. Raftery and Bao (2010) found that the choice of N0 =
1000d, B = 100d, and J = 3000, where d is the number of
parameters estimated, gives good results for estimating marginal
likelihoods. For posterior inference, we have found similar suc-
cess with IMIS-ShOpt, but tend to use J ≥ 10,000 so as to reduce
Monte Carlo variation in tails and interval estimates. The choice
of Q is problem specific and typically has a natural value that
depends on the class of models (see Section 4). In the absence
of creative problem specific strategies, we have found practical
success with using Q = 3 different optimizers targeting a single
criteria. Increasing N0, D, B, and Q increases the number of sam-
ples and will, therefore, improve the importance distribution.

IMIS-ShOpt builds a mixture importance distribution incre-
mentally from a mixture of the prior and a set of Gaussians
in under-represented locations at the current stage of the algo-
rithm. As such the algorithm behaves by effectively monitor-
ing its own convergence. As with other IMIS algorithms, poor
coverage of the target posterior can be detected by presence of
large weights. The algorithm stopping condition is when the
importance sample is built up to J uniformly weighted particles,
or equivalently, when the expected number of unique points
after the final resampling of J points is at least J(1 − e−1).

Following (Raftery and Bao 2010), we assess the performance
of IMIS-ShOpt by monitoring the following criteria:

• the maximum importance weight among the Nk inputs, when
converged this is near 1/Nk;

• the variance of the rescaled importance weights in units of
N−2

k , V̂(w) = 1
Nk

∑Nk
i=1(Nkwi − 1)2, when converged this is

close to 0;
• the entropy of the importance weights relative to uniformity

Û(w) = −∑Nk
i=1 wi

log(wi)
log(Nk)

, when converged this is close to 1.
• the effective sample size ESS(w) = 1∑Nk

1 w2
i

, when converged

this is close to Nk.
• the expected number of unique weights Q̂ = ∑Nk

i=1(1 − (1 −
wi)J), the stopping criterion is when Q̂ ≥ J(1 − e−1).
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Algorithm 2 The Shotgun optimization
Optimization stage:
for d = 1 : D do

Find the dth maximum weight point θ
(initial)
d =

argmax
θ

w(k)(θ), θ ∈ �d−1 to initialize Q optimizers.

for q = 1 : Q do
Use q-th optimization method initialized at θ

(initial)
d

to obtain local maxima θ
(Opt)
d,q along with the corresponding

inverse negative Hessian �
(Opt)
d,q (this step can be parallelized).

Construct �d from �d−1 by excluding N0
QD nearest

neighbor points, that is, exclude N0
QD points θk ∈ �d−1 that

minimize the Mahalanobis distance,

(θk − θ
(Opt)
d,q )

′
(�

(Opt)
d,q )−1(θk − θ

(Opt)
d,q ). (4)

Draw B samples θ1:B ∼ MVN(θ
(Opt)
d,q , �(Opt)

d,q ); add
these points to the importance sampling distribution and
evaluate Hk = MVN(θ1:B | θ

(Opt)
d,q , �(Opt)

d,q ).
end for

end for

To avoid numerical instabilities, the weights given in Equa-
tion (3) are calculated as wi = exp(w̃i)∑Nk

j=1 exp(w̃j)
, where w̃i =

log(P(Y | θ)) + log P(θ) − log {N0
Nk

P(θi) + B
Nk

k∑
s=1

Hs(θi)} −
log(C), and C is a constant obtained as a maximum of the P(Y |
θj).

IMIS-ShOpt is a form of defensive sampling (Hesterberg
1995) which uses a mixture density to avoid having an impor-
tance distribution whose density is too low over portions of the
target. A mixture also defends against infinite variance marginal
likelihood estimators by increasing the variance of the impor-
tance density (Owen and Zhou 2000). As an integrated likeli-
hood estimator for model selection purposes, IMIS-ShOpt is
unbiased, strongly consistent, and asymptotically normal if B
grows at the Kth stage toward infinity (Raftery and Bao 2010).
The ShOpt strategy does not degrade the assumptions behind
their analysis. Although finite sample sizes cannot rule out the
possibility of missed modes, the practical setting with constant
B provides a means of widely exploring P(θ | Y) because ShOpt
improves the chances of finding distant modes.

IMIS-ShOpt is related to adaptive multiple importance sam-
pling (AMIS) in that weights are updated at each iteration of the
algorithm, but differs in that AMIS does not include an opti-
mization stage and AMIS uses all of the Nk particles at stage k
to determine the next Hk, whereas IMIS-ShOpt uses the nearest
B samples to the highest weighted point in its construction of
Hk. Because of the sequential dependence structure imposed
by adding importance samples in regions found to be under-
represented, a more general theoretical convergence for AMIS
and IMIS-ShOpt algorithms to the target posterior remains an
open problem (Cornuet et al. 2012; Marin, Pudlo, and Sedki
2012; Sbert, Havran, and Szirmay-Kalos 2018). However, the
special case where the incremental distributions are determined

a priori convergences to the target posterior under mild condi-
tions (Douc et al. 2007).

4. Examples

In a simple interpretation of the ShOpt strategy one could
use, for example, conjugate gradient, Nelder–Mead simplex,
and Newton’s method as the Q = 3 optimization approaches
targeting a single optimization criterion. Instead, in the fol-
lowing examples we customize IMIS-ShOpt to the nuances of
the models by targeting Q different optimization criteria. We
apply the IMIS-ShOpt to three models highlighting the ability
to overcome common challenges in statistics. The FitzHugh–
Nagumo example is an ordinary differential equation (ODE), of
the form dX(t)

dt = f (X(t)), where our likelihood is multimodal.
There are several established methods for estimating parameters
from differential equation models that we exploit within IMIS-
ShOpt. Using an easy to visualize one-dimensional variant of the
FitzHugh–Nagumo model, Section 4.1.1 showcases the IMIS-
ShOpts ability to overcome the problem of a prior centred on
a distant minor likelihood mode. The full FitzHugh–Nagumo
model is considered in Section 4.1.2 showcasing more gen-
eral applicability of the ShOpt approach in differential equa-
tion models. A susceptible-infectious-recovered epidemiologi-
cal example is used in Section 4.2 with a mixture of continuous
and discrete parameters. Finally, Section 4.3 uses a synthetic-
likelihood example with a stochastic choice of optimization
criterion.

4.1. FitzHugh-Nagumo Model

The FitzHugh–Nagumo (FhN) model (FitzHugh 1961; Nagumo,
Arimoto, and Yoshizawa 1962) captures the behavior of spike
potentials in the giant axon of squid neurons. The FhN model
is described by a system of two nonlinear ordinary differential
equations corresponding to the voltage across the membrane,
V(t), and outward currents (recovery), R(t), at time t with a
vector of parameters of interest θ = [a, b, c],

dV
dt

= c
(
V(t) − V(t)3/3 + R(t)

)
and

dR
dt

= −1
c

(V(t) − a + bR(t)) . (5)

An analytic solution of the ODE system in Equation (5) does not
exist but a numerical solution can be produced with initial states
values V(0) and R(0) which must be appended to the parameter
vector θ . In the following two examples, the measurement error
model for data YV(t) and YR(t) is centered about V(θ , t) and
R(θ , t), the numerical solution of Equation (5),

YV(t) | θ ∼ N
(
V(θ , t), σ 2

V
)

and
YR(t) | θ ∼ N

(
R(θ , t), σ 2

R
)

. (6)

The ShOpt strategy used combines three different parameter
estimation strategies tailored to ODE models: (i) Nonlinear least
squares (NLS) (Bates and Watts 1988; Seber and Wild 1989), (ii)
two stage estimator (Varah 1982; Brunel 2008; Liang and Wu
2008) and (iii) generalized profiling (GP) (Ramsay et al. 2007).
All three are described bellow. The results from these Q = 3
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optimization strategies are combined and compared using a
single target posterior based on the likelihood in Equation (6).

Nonlinear Least Squares. Following Bates and Watts (1988),
the maximum likelihood estimator for θ̂ is obtained by min-
imizing the negative log-likelihood for observations ysj over
system states s ∈ {V , R}, where using our Gaussian likelihood
results in minimizing the sum of squared residuals:

θ̂ = arg min
θ

S∑
s=1

ns∑
j=1

[
ysj − X(θ , tsj)

]2 . (7)

The NLS method has several drawbacks. In order to minimize
Equation (7), NLS requires numerically solving Equation (5) at
each evaluation of the likelihood and, therefore, requires includ-
ing initial states as parameters. Results of NLS depend on the
optimization initialization especially when Equation (7) exhibits
multiple modes, as is common with ODE models (Campbell and
Steele 2012).

Two-Stage Method. The two-stage method first smooths the

data to estimate X̂(θ , t) and its derivative d̂X(θ ,t)
dt (Varah 1982;

Brunel 2008; Liang and Wu 2008). In the second stage, parame-
ter estimates are obtained by maximizing fidelity of the smooth
to the ODE model dynamics in Equation (6).

The local polynomial procedure (Fan and Gijbels 1996)
approximates the sth state Xs(θ , tsj) by a νth order polynomial,
in a neighborhood of the time point ts0, with ai(θ , ts0) =
X(i)

s (θ , ts0) for i = 0, . . . , ν,

Xs(θ , tsj) ≈ Xs(θ , ts0) + (tsj − ts0)X(1)
s (θ , ts0)

+ · · · + (tsj − ts0)
sX(ν)

s (θ , ts0)/ν!

=
ν∑

i=0
ai(θ , ts0)(tsj − ts0)

i,

for s = 1, . . . , S, j = 1, . . . , ns. (8)

Following Fan and Gijbels (1996), the estimators X̂(i)
s (θ , t),

i = 0, 1, are obtained by minimizing the locally weighted least-
square criterion,

ns∑
j=1

[
ysj −

ν∑
i=0

ai(tsj − ts0)
i
]2

Kh(tsj − ts0), (9)

where h controls the size of the neighborhood around ts0,
Kh(.) = Kh/h controls the weights, and K(.) is a Kernel weight
function.

In the second stage, θ̂ is obtained by minimizing the sum of
squared residuals between the derivative estimate and the ODE
model,

θ̂ = arg min
θ

S∑
s=1

ns∑
j=1

[
̂dXs(θ , tsj)

dt
− fs(X̂(θ , tsj), θ)

]2

. (10)

While model (6) only allows noise at the state, here noise enters
the system at both the state and derivative levels. The two-stage
method is computationally more efficient than the NLS, since
it avoids numerical solutions at each evaluation of the objective

function. However, this gain of computational efficiency comes
at the cost of accuracy. Namely, in the first stage the data are
smoothed without using the ODE model information. The ODE
model is only used in the second stage to obtain θ̂ based on the
first stage smoothing results. Separating the estimation proce-
dure in two stages results in a reduced estimation accuracy of
the ODE parameters (Ding and Wu 2014).

Generalized Profiling. Avoiding the numerical solution to the
ODE system, the generalized profiling (GP) method uses model
based data smoothing by penalizing deviation at the level of the
derivative. The data smooth X̂(θ) = �(t)C is a basis expansion
with coefficients C = [C1, . . . , Cs] and basis functions �(t) =
[�1(t), . . . , �s(t)].

GP is a parameter cascade procedure which estimates θ

through the profile likelihood, profiling over C. At each evalua-
tion of the profile likelihood, the basis coefficients are estimated
holding θ fixed

Ĉ | θ , λ, Y = arg min
C

S∑
s=1

ns∑
j=1

[
ysj − �s(tsj)cs

]2

+
S∑

s=1
λ

∫
T

[
d�s(t)cs

dt
− fs(�(t)C, θ)

]2
dt, (11)

where t is integrated over the interval of observation times.
The first term of Equation (11) represents a sum of squares
between the observed states and the basis expansion, while the
second term measures the fidelity of the basis expansion to the
ODE model. The smoothing parameter λ controls the trade-off
between the two. The profile likelihood optimization uses an
outer optimization criterion to estimate θ via

θ̂ | C, Y = arg min
θ

S∑
s=1

ns∑
j=1

[
ysj − �s(tsj)cs(θ)

]2 . (12)

Model based smoothing in Equation (11) makes GP a sort
of hybrid between NLS and two-stage as the data fit is a relaxed
numerical solution.

4.1.1. One Parameter Fitzhugh–Nagumo Example
This example highlights the performance when the prior is
inconsistent with the likelihood by its over-emphasis of an un-
important local likelihood mode. For ease of visualization, we
consider a one parameter model while holding the rest of the
parameters in Equations (5) and (6) fixed to the values, a =
0.2, b = 0.2, σ 2

V = 0.052, σ 2
R = 0.052, V(0) = −1, R(0) = 1,

with θ = c being the only parameter to estimate. The 401 evenly
spaced observations for each of V(t) and R(t) were simulated
with c = 3 and are shown in Figure 1. The prior P(c) = N (14, 2)

is set up based on the belief that oscillations in the data occur
at half the True frequency of oscillation and emphasize a local
likelihood mode. Figure 1(a) and (b) show the likelihood and
its multiple modes separated by deep valleys measuring several
thousands of units on the log scale.

IMIS-ShOpt was run using Q = 3 strategies; NLS, two-stage,
and GP, from D = 4 starting points. To maintain algorithmic
comparability, IMIS-Opt was run with D = 12 initializations.
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Figure 1. Impact of the disagreement between the likelihood and prior on IMIS-Opt and IMIS-ShOpt posterior estimates in one parameter FhN-ODE model. Log of target
distribution (plot A) is obtained by combining the log-likelihood (plot B) with log prior that emphasizes the unimportant local mode (plot C). Densities of the posterior
samples obtained from IMIS-Opt and IMIS-ShOpt are presented in plots D and E, respectively. The plots demonstrate that the IMIS-Opt is trapped in the local unimportant
mode, while the IMIS-ShOpt is robust to the disagreement between prior and likelihood which leads to discovering the global mode.

Both IMIS-Opt and IMIS-ShOpt were run with N0 = 1000,
B = 100, and J = 10, 000, matching the rule of thumb values
in Section 3. Random walk and gradient optimization methods
are faced with challenges because the basin of attraction of the
global likelihood mode begins 4 SD away from the prior mean
(Figure 1(a) and (c)). Consequently, IMIS-Opt becomes trapped
in the local mode emphasized by the prior (Figure 1(d)). IMIS-
ShOpt on the other hand benefits from diversified optimization
strategies and explores more widely to find the global mode
(Figure 1(e)). Table 1 summarizes the convergence diagnostics
for the algorithms, showing that both IMIS-Opt and IMIS-
ShOpt have completed.

The Q = 3 methods (NLS, two-stage, and GP) combined
consistently discover global and local optima. The results from
the NLS were highly affected by the initial points, and con-
sequently, were unable to leave the basin of attraction of the
local mode. The success of GP in finding the global mode
varied (mainly due to choice of λ which was not finely tuned),
while the two-stage method proved to be the least sensitive to
the initial points and consistently converged to values near the
global mode. The exploration of global and local optima is the

goal of IMIS-ShOpt, making optimization strategies with mixed
results beneficial. In some cases multiple modes are important
and incorporating Q optimization strategies allows wider poste-
rior exploration. Figure 2 shows the (un-weighted) importance
distribution samples, �D, at the end of the optimization stage
of the algorithm. For comparison, Figure 2 includes the target
posterior density, which is exceedingly narrow at this horizontal
scale. Following the optimization with the importance stages
fills in additional samples to refine the importance sampling
distribution in important posterior regions.

The natural log Kullback–Leibler divergence between the
IMIS-ShOpt sampled distribution and the target posterior are
given in Table 2. Sample and target densities are very close
together regardless of which is used as the reference. For com-
parison, IMIS-Opt sampled distribution exhibit much higher
natural log Kullback–Leibler divergence from the target poste-
rior compared to that of the IMIS-ShOpt posterior samples. This
result is expected because IMIS-Opt misses the global mode.
Table 3 shows the CPU time of the algorithm when leaving one
optimization strategy out (only using Q = 2) to showcase the
contribution of each approach to algorithm time. In our case, we
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Figure 2. The first two stages (initial and optimization) of building the IMIS-
ShOpt importance sampling distribution in one parameter FhN model. Dispersed
histogram (dark gray distribution) corresponds to the initial importance sampling
distribution. The pointed distributions (light gray color) denote samples obtained
from the optimization stage. The dots (dark gray) at c = 3 and c = 12
represent the global and the unimportant local mode, respectively, discovered by
different optimizers. The vertical line at c = 3 (dark gray) represents the low
variance posterior density from IMIS-ShOpt obtained from the final resampling
stage. This plot demonstrates that after finishing the optimization stage, IMIS-
ShOpt has already found the most important modes including the global mode,
and hence, the importance sampling stage of the IMIS-ShOpt is used for adjusting
the weights of the modes.

Table 1. Convergence monitoring for the one parameter FhN and full FhN.

IMIS-Opt IMIS-ShOpt IMIS-ShOpt
one parameter one parameter full FhN

FhN FhN

The raw marginal likelihood −5.54 −9.39 −190.26
Expected number of unique points 6323.36 6332.88 6387.48
Maximum weight 0.0002 0.0002 0.0003
Effective sample size 9859.66 9817.47 9449.78
Entropy 0.98 0.98 0.88
Variance 0.18 0.22 3.52

NOTE: Convergence diagnostic monitoring tools from the Section 3.

Table 2. Kullback–Leibler (KL) divergence between target distribution for the one
parameter FhN model and the posterior densities obtained from IMIS-ShOpt and
IMIS-Opt.

Target to posterior Posterior to target

KL divergence, IMIS-ShOpt 0.0016 0.0010
KL divergence, IMIS-Opt 3.381 8.474

want to explore the parameter space widely, so we did not spend
much time tuning h in Equation (9) or λ in Equation (11). In
both GP and two-stage, the computation speed can be adjusted
somewhat with these tuning parameters.

IMIS-ShOpt converges in k = 103 iterations. By contrast, the
optimization stage in the IMIS-Opt takes k = 96 iterations for
the algorithm to converge. However, in this case, IMIS-Opt does
not converge to the appropriate posterior as it remains trapped
in the local mode whereas the ShOpt enables wider exploration
and finds the global mode.

The alternative strategy of using an uninformative prior in
the FhN example requires a massive increase in the number of

Table 3. Time until convergence for IMIS-ShOpt using these Q = 2 optimization
strategies for the one parameter FhN Model.

GP and NLS and NLS
two-stage two-stage and GP

Wall-clock (sec) 323.52 444.51 189.28

initial particles to capture the global mode. The likelihood as
shown outlines only a few different modes, however, additional,
but much weaker, local modes exist when expanding out the
dominant range of the prior to larger values. In this example,
IMIS-ShOpt and the ShOpt strategy builds robustness to the
practical challenges when selecting a prior which is strongly
informed but biased.

4.1.2. Full Fitzhugh–Nagumo Example
In this example, the full FhN model is used with vector of
parameters θ = [

a, b, c, σ 2
V , σ 2

R , V(0), R(0)
]
. Table 4 presents

prior specifications and compares them with the one parameter
model of the previous example. The full FhN model has a com-
plex likelihood surface including ripples and ridges along with
the multi-modality from the previous section (Ramsay et al.
2007). This example shows the IMIS-Shopt performance with
higher complexity compared to the toy one parameter model of
Section 4.1.1.

The target posterior is based on the likelihood in Equation
(6). Once again the IMIS-ShOpt is set up with Q = 3 (D = 4,
B = 700, N0 = 7000, and J = 10,000); NLS in Equation (7),
two-stage in Equation (10), and GP in Equations (11) and (12).
In ShOpt, the posterior samples θ̂ are obtained by combining the
results from different optimization criteria, while the Hessian
matrices evaluated at θ̂ are obtained using the target posterior.
Table 1 shows the convergence criteria results for the one param-
eter FhN and the full FhN (previous section).

Figure 3(b) and (c) demonstrates the cause of the posterior
modes in terms of data fit. Although the prior for the parameter
c does not adequately cover the global mode, the IMIS-ShOpt
recovers the two and a half oscillations of the true trajectories in
the one parameter FhN and full FhN. By contrast, the resampled
trajectories obtained from the IMIS-Opt (Figure 3(a)), recover
only one oscillation of the true trajectories, while missing the
other one-and-a-half oscillation. If IMIS-Opt used a stochastic
optimizer or an evolutionary optimizer instead of a gradient
method, it’s possible that the global maximum could have been
found.

4.2. Susceptible-Infected-Removed (SIR) Epidemiological
Example

In this example, we consider a susceptible-infected-removed
(SIR) epidemiological model with a mixture of continuous and
discrete parameters. The data is from the second black plague
outbreak in the village of Eyam, UK, from June 19, 1666 to
November 1, 1666 (Massad et al. 2004). Since the village had
been quarantined, the population size is fixed to N = 261
and is stratified into states of susceptible S(t), infected I(t),
and removed R(t) individuals, N = S(t) + I(t) + R(t). R(t)
corresponds to the number of deaths up to time t, because there
is no recovery from the plague (Campbell and Lele 2014; Golchi
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Table 4. The two FhN models—prior specifications.

a b c σ 2
V σ 2

R V(0) R(0)

One parameter FhN 0.2 0.2 N (14, 2) 0.05 0.05 −1 1
Full FhN N (0, .4) N (0, .4) N (14, 2) IGamma (3, 3) IGamma (3, 3) N (−1, .5) N (1, .5)

True values 0.2 0.2 3 0.05 0.05 −1 1

NOTE: The two FhN models—in the one parameter FhN, prior has been assigned only for the parameter c, while the rest of the parameters are fixed to their true values. In
the full FhN, the prior distributions have been assigned for all parameters.

Figure 3. Resampled trajectories obtained from IMIS-Opt and IMIS-ShOpt posterior samples from the FhN model. Plots A and B are generated using posterior samples
from one parameter FhN model obtained from IMIS-Opt and IMIS-ShOpt, respectively. Plot C is obtained using posterior samples from the full FhN model from IMIS-ShOpt.
The gray lines represent 10,000 resampled trajectories, the solid thick blue and thin green lines correspond to the resampled trajectories at the posterior mean values for
the state variables V and R, respectively. The red points represent the data, which were simulated from the vector of true parameters values θ = (a = 0.2, b = 0.2, c =
3, V(0) = −1, R(0) = 1)

′
. Plots B and C demonstrate that the IMIS-ShOpt finds the global optimum thus, exhibiting a good fit to the data, while plot A shows that the

IMIS-Opt gets trapped in the unimportant local mode thus exhibiting suboptimal fit to the data.

and Campbell 2016). The disease spread dynamics are based on
the ODE model:

dS
dt

= −βS(t)I(t),
dI
dt

= βS(t)I(t) − αI(t),
dR
dt

= αI(t),
(13)

where α describes the rate of death once the individual is
infected and β describes the plague transmission. In order for
the ODE system in Equation (13) to be numerically solved, the
discrete initial states S(0), I(0), and R(0) are required. Since the
number of removed at the initial time is 0, R(0) = 0, it follows
that S(0) = N − I(0), the initial states of the system reduce to
I(0). Hence, parameters of the model are θ = (α, β , I(0)) ′. The
data Y = (y1, . . . , yn)′ comprise of the cumulative number of
deaths, R(t), up to times (t1, . . . , tn), n = 136. The likelihood of
the data followed a binomial distribution with expected value
equal to the solution R(α,β ,I(0))(t) to the system in Equation

(13). States S(t) and I(t) are not observed, however, the number
of infected at the end of the plague is 0, and the number of
infected at time tn−1 must, therefore, equal 1 (Campbell and Lele
2014). These two additional data points on number of infected
individuals X = (xn−1 = 1, xn = 0)′ at times (tn−1, tn)′ were
modeled using binomial likelihood with expected value equal
to the solution I(α,β ,I(0))(t) to the system in Equation (13) at
t ∈ (tn−1, tn)

′ . The resulting likelihood is

P(Y | α, β , I(0)) =
n∏

i=1
Binomial

(
yi | N,

R(α,β ,I(0))(ti)

N

)
×

n∏
i=n−1

Binomial
(

xi | N,
I(α,β ,I(0))(ti)

N

)
.

(14)
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Figure 4. Posterior samples of the SIR-ODE model from IMIS-Opt. Marginal distributions of sampled parameters α, β , and I(0), and bivariate joint posterior distribution of
α and β are shown. The plots demonstrate that the IMIS-Opt gets trapped in one posterior mode, thus failing to explore the other two important modes.

Prior distributions for θ = (α, β , I(0))
′ were chosen to be:

α, β ∼ Gamma(1, 1), I(0) ∼ Binomial
(

N,
5
N

)
. (15)

The challenge of this model is the mixture of discrete
and continuous parameters. Consequently, we employ the
ShOpt strategy targeting different conditional likelihoods rather
than different optimization algorithms. Shotgun optimization
applied to the SIR-ODE model uses the D = 3 highest weights
points to initialize the optimizer, and Q = 10 likelihoods
conditional on fixed discrete values of I(0) ∈ {1, 2, 3, . . . , 10}.
The other IMIS-ShOpt tuning parameters were set to N0 =
3000, D = 3, B = 1000, J = 10,000. IMIS-Opt was run with
D = 30 to maintain a the same number of optimizations
and the other parameters set to match IMIS-ShOpt. See
Appendix (supplementary materials) for implementation
details.

Table 5 shows the computational time in seconds needed to
run the IMIS-ShOpt in comparison to that of the IMIS-Opt for
the SIR model. The IMIS-Opt is slower than the IMIS-ShOpt,
since IMIS-Opt runs the same optimizer 30 times. Figure 5
illustrates multi-modality and topological challenges of the pos-
terior space of the SIR model from the results of IMIS-ShOpt.
Marginal distributions of the two continuous parameters α and
β exhibit isolated modes. Clouds in the bivariate plot of α and
β depict the four modes corresponding to the discrete values of
I(0) = {6, 5, 4, 3} from left to right. The results of IMIS-ShOpt
coincide with those in Campbell and Lele (2014). Although
IMIS-Opt finds the global mode, it misses nearby important

Table 5. Computational time in seconds to run IMIS-ShOpt or IMIS-Opt on the SIR
model.

IMIS-Opt IMIS-ShOpt

737.111 416.019

modes and populates the importance distribution only near
the dominant mode (Figure 4). Convergence diagnostics for
both algorithms are given in Table 1 in the Appendix (sup-
plementary materials), where both IMIS-Opt and IMIS-ShOpt
show convergence to a terminal density. Despite the diagnostic
output, without the wider exploration of the parameter space,
algorithmic convergence may not coincide with convergence to
the target distribution.

4.3. Parameter Estimation With IMIS-ShOpt Using
Synthetic Likelihood

In this section, we introduce the IMIS-ShOpt with synthetic
likelihood (Wood 2010) which borrows ideas from the approx-
imate Bayesian computation (ABC) framework. ABC methods
(Tavaré et al. 1997; Pritchard et al. 1999) provide a framework
for inference in cases where the likelihood is intractable or
very costly to evaluate, but simulating data from the model is
relatively easy.

Direct likelihood-based inference breaks down in chaotic
stochastic systems since small changes in θ cause drastic
changes in the system trajectories and the stochasticity leads
to expensive-to-evaluate or intractable, nonsmooth, and
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Figure 5. Posterior samples of the SIR-ODE model from IMIS-ShOpt. Marginal (diagonal) and bivariate joint (off-diagonal) posterior distributions of sampled parameters
α, β , and I(0) are shown. The plots demonstrate that IMIS-ShOpt successfully explores the three important modes in the posterior space.

chaotic likelihoods (Wood 2010). However, it is relatively
easy to simulate data from such models giving access to
synthetic likelihood inference. Following Wood (2010), a
synthetic likelihood is constructed by comparing summary
statistics which capture the important dynamics in the data.
Ideally, the summary statistics would be sufficient statistics,
however, in practice, they are rarely obtainable. Instead, a
set of summary statistics constructed using known dynamics
of interest could be used to capture different features of
the data. Among the available summaries, those with small
variance and high sensitivity to parameter changes are preferred
choices.

To avoid the requirement of the tolerance levels and the
distance measure needed in ABC, and to gain the efficiency from
the ShOpt thereof, we approximate the likelihood function with
the synthetic likelihood (Wood 2010). Although the synthetic
likelihood approach employs ideas from the ABC framework,
the synthetic likelihood behaves like a conventional likelihood
in the limit, when the number of simulated datasets approaches
infinity, but acts with reduced efficiency because of the lack of
sufficient statistics.

Following Wood (2010), the synthetic likelihood can be con-
structed as follows. For parameters θ , NZ simulated datasets
Z = {Z1, . . . , ZNZ } are generated from P(Z | θ), and the vector
of summary statistics S(Z) = {s(Z1), . . . , s(ZNZ )} is calculated
for each simulated dataset, exactly as the summary statistics
S(Y) are calculated from the observed data. The mean of the NZ

summary statistics, μ̂θ =
NZ∑
i=1

s(Zi)

NZ
, and the variance-covariance

matrix, �̂θ , are used to construct the synthetic likelihood as
MVN(S | Oμθ , O�θ ), that is,

Ls(θ | S(Y)) = −1
2
(S(Y) − μ̂θ )

′
�̂

−1
θ (S(Y) − μ̂θ )

− 1
2

log |�̂θ |. (16)

The target likelihood for importance weights is defined over the
entire set of available summary statistics.

The theta-Ricker model is a chaotic stochastic discrete time
model, where full likelihood-based inference fails, but it is rel-
atively easy to simulate data from the model. Following Gilpin
and Ayala (1973), the ecological theta-Ricker model, states that
the abundance of the population in the next time point, Nt+1, is
equal to the abundance at the current time point Nt , multiplied
by the exponent of the growth rate, exp

(
r(1 − Nt

K )θ̃ + εt
)

, over
the time step t. The process noise, also known as environ-
mental noise is modeled as εt ∼ N(0, σ 2

p ) and K quantifies
carrying capacity. The theta-Ricker model can be written as
follows,

Nt+1 = Nt exp

(
r

(
1 −

(
Nt
K

)θ̃
)

+ εt

)
, (17)

The theta-Ricker model is defined with parameters θ =
[r, φ, σ 2

p , θ̃ ]. The data are outcomes of the Poisson distribution
with mean φNt , where φ is a scaling parameter,

yt ∼ Poisson(φNt).
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Algorithm 3 The IMIS-ShOpt with synthetic likelihood
Goal: Parameter estimation
Input: Data, likelihood function, synthetic likelihood function,
prior distribution and the model.
Initialize B – the number of incremental points, D – the number
of different initial points for the optimization, Q – the number
of different optimization criteria, N0 – the number of initial
samples from the prior and J – the number of resampled points
Initial stage: Draw N0 samples �0 = {θ1, θ2, . . . , θN0} from the
prior distribution P(θ), set k = 0.

For each θ i, i = 1, . . . , N0, simulate NZ vectors of replicate
data Zi = {Z1, . . . , ZNZ } from the model, P(Z | θ i).
For each θ i, i = 1, . . . , N0, calculate the vector of entire set of
available summary statistics, S(Z) = {s(Z1), . . . , s(ZNZ )} and
construct the synthetic likelihood using Equation (16).
For each θ i, i = 1, . . . , N0 calculate the sampling weights,

w∗
i = Ls(θ i | S(Y))

N0∑
j=1

Ls(θ j | S(Y))

(18)

Optimization stage:
for d = 1 : D do

Find the dth maximum weight point θ
(initial)
d =

argmax
θ

w∗(θ), θ ∈ �d−1 to initialize Q optimizers.

for q = 1 : Q do
Randomly select summary statistics S̃dq(Y) and

obtain θ
(Opt)
d,q = arg maxθ L̃dq

(
θ | S̃dq(Y)

)
. Obtain the cor-

responding inverse Hessian �
(Opt)
d,q from Ls(θ | S(Y)).

Update �d by excluding N0
DQ nearest neighbor points,

θk ∈ �d−1, that minimize the Mahalanobis distance,

(θk − θ
(Opt)
d,q )

′
(�

(Opt)
d,q )−1(θk − θ

(Opt)
d,q ). (19)

The IMIS-ShOpt algorithm was used to estimate the param-
eters of the theta-Ricker model. The data were simulated from
θ =

[
log r = 0.5, φ = 4, σ 2 = 0.01, log θ̃ = 1

]
at T=50 time

steps with initial population N0 = 3 and K = 100. Prior dis-
tributions were defined independently, log r ∼ N(0.5, 1), φ ∼
χ2(df = 4), σ 2

p ∼ I(shape = 2, scale = 0.05), log θ̃ =
N(1, 1).

The set of summary statistics used in IMIS-ShOpt is a mod-
ification of the set from Golchi and Campbell (2016),

S(Y) =
{

median(Y),
n∑

i=1

yi
n

,

n∑
i=1

yI(1,∞)(yi)

n∑
i=1

I(1,∞)(yi)

,

n∑
i=1

yI(10,∞)(yi),
n∑

i=1
I0(yi),

Quantile0.75(Y), max(Y),
n∑

i=1
I(100,∞)(yi),

Algorithm 3 *
Algorithm 3 The IMIS-ShOpt with synthetic likelihood - con-
tinued

Draw B samples θ1:B ∼ MVN(θ
(Opt)
d,q , �(Opt)

d,q ); add
these points to the importance sampling distribution P(θ | Y)

and evaluate Hk = MVN(θ1:B | θ
(Opt)
d,q , �(Opt)

d,q ).
end for

end for
Importance sampling stage:
For each θ i, i = 1, . . . , Nk calculate weights:

w(k)
i = cP(θ i)Ls(θ i | S(Y))

N0
Nk

P(θ i) + B
Nk

k∑
s=1

Hs(θ i)

, (20)

where Nk = N0 + B(QD + k) and c = 1/
Nk∑
i=1

w(k)
i .

while
Nk∑
1

(1 − (1 − w(k))J) < J(1 − exp (−1)), that is,

importance sampling weights are not approximately uniform
do

Update k = k + 1.
Choose a maximum weight input, θk, and estimate �k

as the weighted covariance of B inputs with smallest Maha-
lanobis distance,

wp(θ) (θ − θk)
′
(�π )−1 (θ − θk) ,

where the weights are wp(θ) = c1(w(k−1) + 1/Nk), �π is
the covariance of the initial importance distribution and c1 =
1/wp(θ).

Draw B samples θ1:B ∼ MVN(θk, �k); add these points
to the importance sampling distribution and evaluate Hk =
MVN(θ1:B | θm,k, �k).

Calculate weights w(k) using Equation (20).
end while
Resampling stage:
Resample J points with replacement from {θ1, . . . , θNk} and
weights w(k).

n∑
i=1

I(300,∞)(yi),

n∑
i=1

I(500,∞)(yi),
n∑

i=1
yI(800,∞)(yi)

}
. (21)

IMIS-ShOpt was performed with B = 1000, J = 3000, N0 =
10,000, N = 500, D = 4, Q = 3, NZ = 30. At each of the D = 4
iterations of the optimization stage, Q = 3 objective functions
targeted random approximations to the synthetic likelihood
L̃dq

(
θ | S̃dq(Y)

)
where S̃dq(Y) is the (dq)th random selection

of 7 summaries from the 11 possibilities in Equation (21),
S̃(Y) = {si, sj, sk, sl, sm, so, sp | i, j, k, l, m, o, p ∈ 1, . . . , 11} ⊆
S(Y). There were

(11
7
) = 330 possible objective functions that

the DQ = 12 optimizers could target. These approximations to
the target synthetic likelihood explore different regions of the
posterior space, and therefore, increase the chances of discover-
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Figure 6. Marginal posterior distributions of the sampled parameters log r, φ, σ 2
p , and log θ̃ obtained from the final resampling stage of the IMIS-ShOpt with synthetic

likelihood from the theta-Ricker model. The vertical lines are drawn at the posterior mean (blue dashed) and the true value (red dotted). The thick gray distributions
represent the priors. The plots indicate that IMIS-ShOpt successfully explores the posterior space of the theta-Ricker model.

ing additional important posterior modes. The pseudo-code of
the IMIS-ShOpt algorithm with synthetic likelihood is given in
Algorithm 3.

The idea of optimizing a random subset of the model is com-
mon in fitting massive neural network models in Deep Learning.
The strategy dubbed “dropout” randomly removes portions of
the model (for us a subset of summaries) at each optimiza-
tion step in order to avoid overfitting and to ease optimization
(Goodfellow, Bengio, and Courville 2016). Approximations to
the target synthetic likelihood constructed by randomly chosen
subsets of summary statistics, are less constrained by infor-
mation and therefore, more diffuse then the target synthetic
likelihood, making them easier to optimize while allowing wider
exploration of the target posterior.

Table 6 shows convergence diagnostics. The results, pre-
sented as kernel density estimates of the approximate marginal
posteriors, are given in Figure 6. Figure 7 shows that the weights
of all the particles in the importance sampling distribution
before the final resampling stage are nonzero in the neighbor-

Table 6. Convergence monitoring for the Ricker model.

Ricker model

The raw marginal likelihood −10.76
Expected number of unique points 1908.90
Maximum weight 0.003
Effective sample size 2051.11
Entropy 0.78
Variance 21.91

NOTE: Convergence diagnostic monitoring tools from the Section 3.

hood of the true parameter values. In addition, Figure 7 shows
that before the final resampling stage the importance sampling
distribution of the process noise variance, σ 2

p , contains particles
with negative values, however, these have zero weights and are
not resampled in the final stage.

5. Discussion

This article proposes an importance sampling strategy based
on ShOpt, which exploits the NFL theorem for optimization by
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Figure 7. Weights of the particles in the importance sampling distributions of the parameters log r, φ, σ 2
p , and log θ̃ before the final resampling stage for the theta-Ricker

model from the IMIS-ShOpt with synthetic likelihood. The vertical lines are drawn at the true parameter values. The plots demonstrate that the weights of the points are
concentrated around the true values.

employing different model variations (Sections 4.1.1 and 4.1.2),
optimizing with different conditions (Section 4.2), or different
optimization criteria (Section 4.3). The solutions we proposed
were customized to the modeling scenario. An alternative strat-
egy would be to use a variety of optimizers for a fixed model,
for example, stochastic gradient descent, simplex, and higher
order methods as the Q optimizers. However, this will not be
as effective at increasing the probability of finding a global
optimum as exploiting the model structure in the optimizer
(Wolpert and Macready 1997).

While IMIS-ShOpt was run with the same number of opti-
mization initializations as IMIS-Opt, the diversity of results
attainable from different optimizers provides robustness to cases
where the prior and likelihood are inconsistent, the posterior
contains distant but important modes, or a single optimizer may
computationally struggle in portions of the parameter space.
The alternative strategy of selecting a diffuse or uninformative

prior for the parameter requires a massive increase in the num-
ber of initial samples, especially as the dimension of the problem
increases. Instead of introducing philosophical challenges from
altering the prior to ease optimization rather than capturing
expert opinion, ShOpt provides a means of efficiently target-
ing resources to important, potentially unexpected posterior
regions.

Although IMIS originally developed for estimating marginal
likelihoods P(Y) = ∫

P(θ , Y)dθ for model selection, in this
article, we focus on parameter estimation to elucidate the benefit
of exploiting the NFL theorem. Convergence diagnostics for
IMIS and AMIS types of algorithms only describe convergence
of the process used to add more samples and more distributions.
Without wider exploration of the posterior space convergence
of an algorithm may not equate to convergence to the target
posterior. The same has been observed for MCMC (Cowles and
Carlin 1996). Just as recent MCMC variants designed to exploit
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wider targeted exploration add robustness to problems caused
by challenging posterior topologies, so does Shotgun approach
add robustness to complex problems within the importance
sampling framework.

Supplementary Materials

Computer Code: Examples in this article are implemented in (R Core
Team 2017), using following packages: utils, graphics, parallel, CollocIn-
fer (Hooker, Ramsay, and Xiao 2016), deSolve (Soetaert, Petzoldt, and
Setzer 2010), lokern (For R and Enhanced by Martin Maechler 2016),
IMIS (Raftery and Le Bao 2012), gtools (Warnes, Bolker, and Lumley
2015), MCMCpack (Martin, Quinn, and Park 2011), mvtnorm (Genz and
Bretz 2009), truncnorm (Mersmann et al. 2018), optimx (Nash 2014),
coda (Plummer et al. 2006), matrixcalc (Novomestky 2012), numDeriv
(Gilbert and Varadhan 2016), flexmix (Grün and Leisch 2008). R code
of the implemented examples can be found on github https://github.com/
BiljanaJSJ/IMIS-ShOpt.
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